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Abstract A numerical model for three-dimensional fully nonlinear free-surface waves is developed by apply-
ing a boundary-type meshless approach with a leap-frog time-marching scheme. Adopting Gaussian Radial Basis
Functions to fit the free surface, a non-iterative approach to discretize the nonlinear free-surface boundary is for-
mulated. Using the fundamental solutions of the Laplace equation as the solution form of the velocity potential,
free-surface wave problems can be solved by collocations at only a few boundary points since the governing equation
is automatically satisfied. The accuracy of the present method is verified by comparing the simulated propagation
of a solitary wave with an exact solution. The applicability of the present model is illustrated by applying it to the
problem of a solitary wave running up on a vertical surface-piercing cylinder and the problem of wave generation
in infinite water depth by a submerged moving object.
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1 Introduction

For several decades, water-wave problems have been studied as potential-flow problems governed by the Laplace
equation with nonlinear boundary conditions. Due to the rapidly increasing power of computers, time-dependent
three-dimensional wave–body interaction problems can now be simulated numerically. Most of these studies have
been carried out with boundary-element methods (BEM), subjected to a mixed Eulerian–Lagrangian (MEL) time-
marching approach [1–7]. With MEL, particle trajectories and the nonlinear boundary conditions on the free surface
can be predicted via numerical integration in the time domain. The velocity potential of a linear boundary-value
problem can then be obtained directly at the next time step. Usually, the prediction of particle trajectories and
nonlinear free-surface boundary conditions involve lengthy iteration procedures. The MEL approach is explained
in detail in the review paper of Tsai and Yue [8]. As BEM, also called boundary-integral-equation methods (BIEM),
are based on solving integral equations, integration along the boundaries is always needed by solving the equations
directly. Evaluating these integrals is a tedious task since there are singularities on the boundaries, either fixed or
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moving ones. Meanwhile, the full dense matrices resulting from BEM take a lot of time when solving the linear alge-
braic system. Although the computation can be speeded up by compressing these full matrices to sparse ones with
some approximations such as the fast multipole method, panel clustering or wavelet compression [9–11], the task
of computing tedious singular integrals still remains in BEM with some difficulties for implementing free-surface
water-wave problems.

Cao et al. [12] proposed that, by moving the singularities away from the boundaries and outside the computa-
tional domain, the computational time can be reduced efficiently as a consequence of simplifying the evaluating
techniques for the surface integrals. This approach is known as the desingularized boundary-integral-equation
method (DBIE). There are two versions of DBIE, namely, direct and indirect methods. The direct version of DBIE
still requires boundary-elements/panels/meshes and integration over the panels, but the integration is easier as a
result of desingularization. In the indirect approach of DBIE, the integration is carried out on a surface outside the
computational domain. By using a one-point quadrature integrating scheme, the integrals can be replaced by the
summation of a finite number of singularities (or their derivatives); thus no integration is needed. The approach has
been successfully applied to simulate both steady and time-dependent water-wave problems [12–14].

In the last decade, a wide family of methods has emerged that attempt to overcome the requirement of compu-
tational grids or meshes. The most common name of this family is meshless methods, while sometimes they are
also called mesh-free, grid-free, element-free, mesh-reduction, particle or finite point methods, including Galerkin
and collocation methods. All of them share the characteristics of not requiring explicit connectivity information,
which includes node-to-node distances, azimuths and the sequential relations among these nodes. The basic idea
of meshless methods is the construction of radial basis functions (RBFs) which states only the relationship of
node-to-node distances. The RBFs were first developed for interpolation of scattered data [15,16], and later became
a kind of artificial neural-network kernels [17]. Applications of solving PDEs with the construction of RBFs have
been available for years [18]. Generally speaking, there are two kinds of meshless methods, namely, the domain-
type and the boundary-type. In the domain-type meshless method, any single RBF does not satisfy the governing
equations, so a large number of collocation points are needed in both the computational domain as well as on the
boundaries to obtain a better solution. The advantages are the easy programming and averting the chore of mesh
generation since neither the number of nodes nor the matrix size is reduced too much. Many studies towards solv-
ing fluid-dynamic problems with domain-type meshless methods exist [19–24]. On the other hand, if there exists
some fundamental solution which satisfies the governing equation (such as Laplace, Helmholtz, etc. for example),
one can choose fundamental solutions as the radial basis functions and set all the source points (centers of RBFs)
outside the computational domain. Then, no singularity will be in the computational domain and only collocation
points on the boundary are needed to solve these problems [25,26]. This kind of meshless method also goes by
the name of method of fundamental solutions (MFS). The idea of MFS is similar to the indirect DBIE, while the
difference is that indirect DBIE still needs some numerical integration along the surface on the boundary or outside
the domain, but MFS only employs collocation about the boundary points without needing any mesh generation
and numerical integration. Therefore the MFS is more simple and efficient than the DBIE to model nonlinear
water-wave problems. It should be noted that the integrals in the indirect DBIE in which the integration is carried
out outside the domain can be reduced to the solution form of MFS by using a one-point quadrature integrating
scheme.

For simulating fully nonlinear free-surface gravity water-wave problems, Wu et al. [27] proposed a boundary-
type meshless method with a leap-frog time-marching scheme which is meshless except on the free surface. Soon,
they modified their model into a real meshless one by adopting the interpolating approach of an RBF-type artificial
neural network and choose the Gaussian function to be the RBF to fit the free surface [28]. Although theoreti-
cally their method could be suitable for three-dimensional wave–body interaction problems, they applied it only to
two-dimensional wave cases in a fixed sea-bed region, without any wave–body interaction. Furthermore, the free-
surface boundary conditions were estimated slightly off in their numerical approximation, so that the wave crests
were a little underestimated. Here, the free-surface boundary conditions are correctly formulated and verified with
an exact solitary-wave solution. The applicability of the present meshless method for three-dimensional wave–body
interaction problems is demonstrated.

123



Applicability of the method of fundamental solutions to 3-D wave–body interaction with fully nonlinear free surface 63

2 Mathematical description

2.1 Governing equation

When a water-wave problem is undertaken as a potential-flow problem, there exists a velocity potential satisfying
the Laplace equation

∇2φ = 0, (1)

where φ(
⇀
x , t) is the velocity potential, in which

⇀
x denotes the position vector in three-dimensional space, and

∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 is the Laplacian operator. The velocity vector is defined as ⇀
v = ∇φ.

2.2 Boundary conditions

At the free surface the boundary conditions are specified as follows

∂φ

∂z
= ∂η

∂t
+ ∇hφ · ∇hη, (2)

∂φ

∂t
= −gη − 1

2
∇φ · ∇φ + C(t), (3)

where η(x, y, t) is the free-surface displacement and ∇ = ∂
∂x

⇀

i + ∂
∂y

⇀

j + ∂
∂z

⇀

k is a three-dimensional operator

while ∇h = ∂
∂x

⇀

i + ∂
∂y

⇀

j is a horizontal (two-dimensional) operator. The integral constant C(t) can be set to zero
if the water is initially still. The above two equations are called the kinematic and dynamic free-surface boundary
conditions (K.F.S.B.C and D.F.S.B.C), respectively.

Beneath the free surface, the no-flux boundary condition is applied at a solid boundary surface, that is,

∇φ · ⇀
n = ⇀

vb · ⇀
n (4)

where
⇀
n is the normal vector pointing outward from the body surface and ⇀

vb is the velocity of the body surface.

2.3 Initial condition

In wave problems with initially still water, the initial condition can be set as

φ(
⇀
x , 0) = 0. (5)

For other cases in which the water is not initially still, the initial condition should be given as known. As the
governing equation and the boundary conditions and initial conditions are given, the problems of wave motion are
well posed and can be solved numerically.

3 Numerical implementation

3.1 Radial basis functions

Firstly, the time domain is discretized by using the symbol the (n) to denote the n-th time step. Based on the concept
of meshless methods, the numerical solution of the velocity potential is assumed to be a linear combination of
N radial basis functions. Thus
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φ(n)(
⇀
x ) =

N∑

i=1

α
(n)
i p(n)

i (
⇀
x ), (6)

where p(n)
i (

⇀
x ) is the radial basis function (RBF) whose origin (also named source point) is at

⇀
x

(n)

i at the instant

of the n-th time step with α
(n)
i as its weight factor. The type of RBF chosen for φ in this study is the fundamental

solution of a 3-D Laplacian operator, that is,

p(n)
i (

⇀
x ) = 1/r (n)

i (
⇀
x ), (7)

where r (n)
i (

⇀
x ) = ∣∣⇀x − ⇀

x
(n)

i

∣∣ is the distance from any position in the computational domain to that specific source
point. The solution form satisfies the governing equation automatically throughout the computational domain, even
if all the RBF centers are chosen outside the computational domain. The solution at each time step can then be
obtained by solving α

(n)
i from the matrix collocated from the boundary conditions only. At each time step there are

N unknowns (α(n)
i , i = 1, . . . , N ) to be solved. Thus, N boundary points are needed for the method of collocation.

Based on the solution form in Eq. 6, the gradient of the velocity potential, which denotes the velocity of the fluid,
is given by

(∇φ)(n) =
N∑

i=1

α
(n)
i ∇ pi . (8)

3.2 Time-marching scheme

At each time step, to solve the velocity potential for the entire domain, collocation is employed for boundary points.
As mentioned above, conditions for collocation are given by the motion of the solid boundary and/or predicted from
the free-surface boundary conditions, in which nonlinear terms are involved. By application of the second-order
finite difference in time, the free-surface boundary conditions can be formulated as

η(n) = η(n−2) + 2�t

(
∂φ

∂z

∣∣∣∣
z=η

− ∇hφ|z=η · ∇hη

)(n−1)

, (9)

φ|(n)

z=η(n−1) = φ|(n−2)

z=η(n−1) − 2�t

(
gη + 1

2
(∇φ · ∇φ)|z=η

)(n−1)

. (10)

In the above formulae, the required data on the right-hand side, including the nonlinear terms, are already known
when solving the velocity potential in the entire domain at the n-th time step. General speaking, this explicit time-
marching scheme can be regarded as a leap-frog approach, in which the velocity potential and the displacement at
the free surface can be directly obtained from the above formulae, without any iteration. In the works of Wu et al.
[27,28], the left-hand side in Eq. 10 was approximated as φ|(n)

z=η, while the first term on the right-hand side in Eq. 10

was estimated as φ|(n−2)
z=η . This might be fine for cases in which the nonlinearity is not strong. But since φ|(n)

z=η(n−1)

is slightly different from φ|(n)
z=η, and φ|(n−2)

z=η(n−1) is also slightly different fromφ|(n−2)
z=η , this minor difference in the

approximations may cause significant errors in cases of strong nonlinearity.
Beneath the free surface, the no-flux boundary condition can be expressed as follows:

N∑

i=1

α
(n)
i

(
∇ pi · ⇀

n
)(n)

⇀
x =⇀

x b
=

(
⇀
vb · ⇀

n
)(n)

⇀
x =⇀

x b
. (11)
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3.3 Collocation for solving the velocity potential

The matrix formed by collocation of the boundary conditions can be expressed as

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

a1,1 · · · a1,N
. . .

... ai, j
...

. . .

aN ,1 · · · aN ,N

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(n) ⎡

⎢⎢⎢⎢⎢⎢⎣

α1
...

α j
...

αN

⎤

⎥⎥⎥⎥⎥⎥⎦

(n)

=

⎡

⎢⎢⎢⎢⎢⎢⎣

b1
...

bi
...

bN

⎤

⎥⎥⎥⎥⎥⎥⎦

(n)

. (12)

For boundary points near the free surface (i = 1 ∼ Ns), the entries in the matrix in Eq. 12 are given as

a(n)
i, j = p(n)

j (
⇀
x i ), b(n)

i = φ(n)(
⇀
x i ), (13a,b)

where φ(n)(
⇀
x i ) is estimated by the free-surface boundary conditions. It should be noted that, regarding Eq. 10, the

points for collocation are not on but near the free surface. These collocation points were on the free surface at the
previous time step and might be above the free surface at the present time step. For boundary points on the body
surface,

⇀
x i (i = Ns + 1 ∼ N ), the entries in the matrix are given as

a(n)
i, j =

(
∇ p j · ⇀

n
)(n)

∣∣∣∣⇀
x =⇀

x i

, b(n)
i =

(
⇀
vb · ⇀

n
)(n)

∣∣∣∣⇀
x =⇀

x i

. (14a,b)

3.4 Calculating the free-surface gradient

Apart from the above-mentioned descriptions, for solving the problem, the gradient of the free surface in Eq. 9
is also needed. Wang [14] developed an unstructured MEL model for the simulation of the nonlinear wave–body
interaction with the desingularized boundary-integral-equation method. With a local interpolation method and high
resolution of meshes, the free-surface intersection with the body can be precisely predicted. In the present study,
the interpolating method of an RBF-type artificial neural network is adopted and the Gaussian function is chosen to
be the RBF to fit the free surface. The collocation of fitting the free surface for three-dimensional wave problems
in the present study is

η(n)(x, y) =
NS∑

i=1

β
(n)
i qi (x, y), qi (x, y) = exp

(
−

(
(x − xi )

2 + (y − yi )
2

σ 2
i

))
, (15a,b)

where qi (x, y) is the two-dimensional RBF whose center is at (xi , yi ) with β
(n)
i as its weight factor. For the appli-

cation of this approach to two-dimensional free-surface potential-flow problems one may refer to the work of Wu
et al. [28]. The values of σi are the shape parameters denoting the range of influence of these RBFs. The reason for
choosing the Gaussian RBF for fitting the free surface is that, when solving the weights of these RBFs, the matrix
becomes sparse and almost banded and can be solved rapidly for small values of σi . However, as σi approaches
zero, the Gaussian RBFs behave like delta functions and the value of η is always zero, except in the vicinities of
these RBF centers. To avoid this kind of singular condition and to solve the problem rapidly, the value of σi should
be chosen properly. Wu et al. [28] proposed that the value of the shape parameter of the Gaussian RBF should be
greater than half of the nodal spacing to keep away from the singularity. According to our tests, this criterion would
be fine if one’s only concern were the accuracy of the calculated elevations of these free-surface nodes. However,
for the accuracy of the elevation and the slope of the entire free surface, the shape parameter of the Gaussian RBF
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should be greater than the nodal spacing. At each time step, when the free-surface displacement at n-th time step
η(n) is known, the weights β

(n)
i can be solved from the following linear algebraic system:

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

a1,1 · · · a1,NS

. . .

... ai, j
...

. . .

aNS ,1 · · · aNS ,NS

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(n) ⎡

⎢⎢⎢⎢⎢⎢⎣

β1
...

β j
...

βNS

⎤

⎥⎥⎥⎥⎥⎥⎦

(n)

=

⎡

⎢⎢⎢⎢⎢⎢⎣

b1
...

bi
...

bNS

⎤

⎥⎥⎥⎥⎥⎥⎦

(n)

, (16)

where

a(n)
i, j = q(n)

j (xi , yi ), b(n)
i = η(n)(xi , yi ). (17a,b)

Once the β
(n)
j have been solved, the gradient of the free surface can be obtained as

(∇hη)(n) (x, y) =
Ns∑

j=1

β
(n)
j ∇hq j (x, y). (18)

This equation is valid for the whole free surface in the computational domain, not only for these free-surface
collocation nodes.

3.5 Procedures of numerical implementation

The marching procedures of the numerical implementation to find the physical unknowns at each new time step are
listed as follows:

Procedure 1: The velocity potential φ in the entire domain and the particle displacement at the free surface η are
given initially (at n = −1 and n = 0).

Procedure 2: The positions of the collocation points both on the body surface and close to the free surface for the
n-th time step are updated. Also, the positions of the source points above the free surface and inside
the body are updated.

Procedure 3: The velocity potential at the collocation points near the free surface is calculated by Eq. 10. Then,
the condition for collocation near the free surface can be applied.

Procedure 4: After calculating the partial derivatives of the RBFs in Eq. 8 for all the collocation points, the solid-
boundary condition beneath the free surface can then be applied by Eq. 11.

Procedure 5: The weights of the RBFs in Eq. 6, α
(n)
i , are solved from the matrix collocated by procedures 3 and 4.

Procedure 6: The elevations of the boundary points on the free surface are calculated by Eq. 9. After solving the
matrix formed by Eq. 15 (solving β

(n)
i ), the free-surface gradients at these points are calculated by

Eq. 18. It should be noted that these boundary points differ slightly from the collocation points.
Procedure 7: The velocity potential throughout the computational domain at the n-th time step can now be obtained

from Eq. 6, and then the velocity in the entire domain can be calculated from Eq. 8.
Procedure 8: The number of time steps is checked. If the simulation has to be continued, procedure 2 for the next

time step is then processed.

4 Model verifications

To study accuracy of the present model, the conservation of mass and energy for a problem of propagation of a
solitary wave in a wave flume is chosen for verification. The still water depth and the wave height are 1.0 and 0.3 m,

123



Applicability of the method of fundamental solutions to 3-D wave–body interaction with fully nonlinear free surface 67

-0.1

0.0

0.1

0.2

0.3

0.4

-25 -15 -5 5 15 25 35 45

numerical result exact solution

0/ hx

0h
η

Fig. 1 The propagation of a solitary wave for the case
H/h0 = 0.3
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Fig. 2 The evolution of the relative mass error for the case of
H/h0 = 0.3

respectively. The horizontal range of the computation domain is chosen as x = −25 to 45 m and y = −5 to 5 m.
The position of the wave crest (xc) is initially at −15 m. The nodes on the free surface are arranged in equal spacing
of �x = �y = 1 m, except those near the edge. The nodal spacing is about 1/12 of the wave length L95%, which
is defined as the range of 95% of the mass of the solitary wave. The locations of the free-surface nodes near the
edge are slightly shifted inward the domain to accelerate the computations, for arranging the free-surface nodes
on the side wall spoils the matrix and consumes much computation time. The shifted distance is 1/4 of the nodal
spacing. The same rule is followed for arranging boundary nodes at the bottom. For the two side walls, boundary
nodes are arranged according to the same longitudinal nodal spacing as the free-surface and bottom nodes. To allow
water-surface modulation, the nodes on the side walls in the vertical direction are purposely placed in the range
from the bottom to an elevation higher than still water. This rule is followed for arranging boundary nodes on the
walls at the two ends.

After some tests, it is found that the offset distance of sources from the boundary edge nodes should be greater
than the usual 1.2 nodal spacing. Otherwise, some fluxes will flow across the side walls and the laws of physics will
be violated. The same situation is also found for choosing the shape parameter of the Gaussian RBF when fitting
the free surface. The shape parameter of the Gaussian RBF in the region should be greater than the nodal spacing,
except those near the edges.

To obtain accurate computational results, there are three rows nearest to the edges chosen to enlarge the offset
distance of the source points from the boundary and to enlarge the shape parameter of the Gaussian RBF for fitting
the free surface. The offset distance is chosen as 1.5 nodal spacing while the shape parameter of the Gaussian RBF
is chosen as 3 nodal spacings.

At each time step, after the elevation of the free-surface boundary nodes have been calculated, the entire free
surface can be obtained by Eq. 15, including the elevation of each inter-surface line between the free surface and
the side wall. The accuracy of the present model is verified by comparing the numerical results with those of the
third-order solitary-wave solution of Grimshaw [29].

The propagation of the solitary wave along the centre line of the flume is illustrated in Fig. 1. From this figure,
it is found that the elevation of the wave crest remains at 99.2% of the initial wave crest after the solitary wave
has traveled a distance of 50 times the water depth. This implies that the energy is conserved. The total volume in
the wave flume is calculated at each time step and conservation of fluid mass is also checked. The evolution of the
relative mass error is shown as Fig. 2. From this figure, one can find that the total volume in the wave flume increases
slightly as the solitary wave moves forward. The relative mass error remains within 0.03% during the simulation.
Referring to the work of Ambrosi and Quartapelle [30], in which the problem was treated as one of Boussinesq
type and solved by a finite-element method, the mass error of the present study is of the same order with their test
of nodal spacing in 0.25 h0. It should be noted that, with the present method, a coarser nodal spacing of 1.0h0 is
sufficient to maintain the same order of mass errors. It should be pointed out that the wave height in the test for
checking mass conservation in the work of Ambrosi and Quartapelle [30] was only 0.2, with a higher nonlinearity
of the wave height, 0.3, being used in present study.
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5 Model applications

5.1 Run-up of a solitary wave on a surface-piercing vertical cylinder

As an example of the applicability of the present model, the numerical simulation of the run-up of a solitary wave
on a surface-piercing vertical cylinder is carried out. The horizontal range of the computation domain is x = −25
to 15 m and y = −19.2 to 19.2 m. The still-water depth and the incoming wave height are 1 and 0.3 m, respectively.
The position of the wave crest (xc) is initially at −15 m. A cylinder of radius 2 m is placed at (0, 0). The rule
for arranging the collocation points and source points described in the previous section is followed, but the nodal
density is increased in the region of x = −4 to 4 m and y = −4 to 4 m with �x = �y = 0.8 m in response to the
wave reflection from the cylinder. The propagation of the solitary is illustrated in Fig. 3. From this figure, one can
see that water piles up on the impinged side as the solitary wave approaches the cylinder and reaches the highest
value when the wave moves to xc = −2h0. The simulated run-up is 0.49h0, which is 4% higher than the result
of 0.47h0 reported in the work of Ambrosi and Quartapelle [30]. After this stage, scattered waves begin to spread
out. The higher run-up may be attributed to the new finite-difference approximation of the nonlinear free-surface
boundary conditions.

5.2 Wave generation by a submerged moving object

5.2.1 Description of the problem

The wave problems studied in the previous section, with a fixed bottom at finite depth, can be simplified by a
depth-integrated method to simpler problems, such as problems involving Boussinesq-type equations [30–34]. If
monochromatic waves are of concern, these wave problems can be further simplified to mild-slope equations [35–
38] by utilizing the periodicity of monochromatic waves. As a result of depth-integration, a three-dimensional
problem reduces to a two-dimensional problem and a two-dimensional problem becomes a one-dimensional prob-
lem. Although some accuracy is lost, computation time is greatly reduced. Therefore, depth-integrated methods are
widely applied for water-wave problems in ocean and coastal engineering.

Unlike depth-integrated methods, the present numerical method is applicable to nonlinear water-surface wave
problems with infinite depth or with depth-varying bottom. Particularly, the present method is applicable to non-
linear wave-interaction problems with objects, fixed or moving, under water. To demonstrate the advantage of the
present approach, problems of wave generation in infinite depth by a submerged moving object are chosen. The
problem of wave generation by a submerged immobile spheroid in a steady stream of infinite depth, which is
equivalent to the problem of wave generation in still water by a submerged moving spheroid with constant speed,
has been investigated previously by others [39–46], and therefore provides a useful benchmark for the comparison
of the present numerical results. As this case is a steady-state problem, while the present model is a time-domain
numerical one, the submerged object must be accelerated from still condition to a specific speed and then travel
beneath the free surface at this constant speed. The spheroid is considered moving in the x-direction at a speed of
Vb(t). A sieve technique [14] is applied to allow the body boundary to be still initially and accelerated to a speed
of Ub gradually over a short period. The speed of the submerged spheroid as a function of time can be adjusted as

Vb(t) = Ub Sv(t), (19)

where the sieve function Sv(t) is chosen as the smooth function

Sv(t) =
{

3(t/tc)2 − 2(t/tc)3, as 0 ≤ t ≤ tc
1, as t > tc

(20)

and tc is the end time of the sieve treatment, which, in this work, is set at tc = 0.3L/Ub where L is the length of
the spheroid. The acceleration of the spheroid can be calculated by time derivation of the velocity function.
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Fig. 3 The process of a solitary wave running up on a vertical cylinder in a three-dimensional view
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Fig. 4 Sketch of a spheroid
and variables associated
with its motion

a

L

d
b

x

z

)(tVb

f h

5.2.2 Model setting

(a) Arrangements of boundary and source points
In the present study, the spheroid is set to travel at a submergence depth of f . The spheroid is set to be traveling

with its center from x = 0L to x = 8L during the simulation. With a margin of 2L at the back of the spheroid
and a margin of 1L in front, the range in the x-direction is x = −2.5L to 9.5L . For the angle of the wake a value
of about 39◦ was mentioned in the above-listed papers, and also with a margin of 1L , the range in the y-direction
being y = −4L to 4L . The range in the horizontal lateral is far enough for the outgoing waves to travel before the
spheroid reaches the terminal point in the computations. The body surface of the spheroid is defined as follows.

(x − xc)
2

a2 + (y − yc)
2 + (z − zc)

2

b2 = 1, (21)

where xc, yc and zc are the coordinates of the moving spheroid center, and a and b are the semi-lengths of the
major and minor axes (a = L/2 and b = d/2, where d is the diameter at the center of the spheroid). The sketch of
the spheroid and the variables associated with the motion of the spheroid are given in Fig. 4. A schematic diagram
showing the arrangement of the boundary and source points is shown in Fig. 5. From bow to stern, 16 longitudinal
lines are set up on the body surface. Along each longitudinal line, the nodal spacing is properly chosen so that it
nearly equals the nodal spacing in the lateral direction. It should be noted that the nodal spacing on the body surface
is not constant and could be much smaller than that on the free surface.
(b) Spacing of free-surface nodes

For studying the required nodal resolution on the free surface, a spheroid with diameter-to-length ratio of 0.1 is
chosen. The diameter-to-submergence ratio is 1.0. Thus, the water depth above the spheroid is half the diameter.
The flow velocity is chosen for a Froude number of 0.5 (FL = Ub/

√
gL). Simulations for various free-surface nodal

spacings have been carried out. The range of the nodal spacing is from L/14 to L/8. Following the procedures
described in the previous sections, the offset distance of the sources above the free surface is 1.2 nodal spacing and
the shape parameter of the Gaussian RBF for fitting the free surface is equal to the nodal spacing. The arrangements
on the body surface are kept the same in each run. Figure 6 shows the free-surface profiles of y = 0 at the stage
xc = 2L for these tests. From the comparison in Fig. 6, one can observe that, when the free-surface nodal spacing
is less than or equal to 1/12 spheroid length, it is sufficient to reveal the characteristics of the free-surface wave.
From Fig. 6, one can also find that the distance between the first two peaks is about 1.3L , which indicates there are
about 16 nodes within one wave length.

Since present method is called “meshless”, the boundary points on the free surface are unnecessarily arranged
in a regular pattern of equal spacing. One can reduce the nodal density in some regions based on physical wave
behaviors. It is anticipated that a wave decays when traveling away from the path of the spheroid. During the process
of decaying, the waves become longer. Therefore, the nodal density in the regions away from the vicinity of the
path of the spheroid can be reduced significantly. In the region of |y| ≥ 2L , the nodal density is reduced by setting
the nodal spacing to 1/6 spheroid length, while the nodal density is reduced by setting the nodal spacing to 1/8 and
1/10 spheroid length in the regions of 2L > |y| ≥ L and L > |y| ≥ 0.5L . Near the path of the spheroid, the nodal
spacing is maintained at 1/12 spheroid length. A comparison of free-surface contours calculated by constant nodal
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Fig. 5 Schematic diagram of boundary and source points arrangement

Fig. 6 Computed
free-surface profiles of
y = 0 at xc = 2L for testing
the convergence of the
free-surface nodal density
(the spheroid for a
diameter-to-length ratio 0.1
with a diameter-
to-submergence ratio 1.0
and Froude number 0.5)
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spacing with those contours calculated by varying nodal spacing at a stage of xc = 4L is shown in Fig. 7. From this
figure, one can observe that the results calculated by both nodal arrangements nearly coincide.

5.2.3 Numerical results

Computed evolutions of both the free-surface elevation contours and the central free-surface profile for the case of
a spheroid with a diameter-to-length ratio 0.1, with a diameter-to-submergence ratio 1.0 and Froude number 0.5
are shown in Figs. 8 and 9. The wave pattern in a three-dimensional view at the stage xc = 8L is shown in Fig. 10.
It should be noted that the x- and z-axes in Fig. 9 are not drawn to scale.
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Fig. 7 Comparison of
free-surface contours
calculated in constant nodal
spacing with those contours
calculated in varying nodal
spacing at xc = 6L (the
spheroid in diameter-
to-length ratio 0.1 with a
diameter-to-submergence
ratio 1.0 and Froude number
0.5)
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Fig. 8 Evolution of free-surface elevation contours for the case of a spheroid with a diameter-to-length ratio 0.1 with the diameter-
to-submergence ratio 1.0 and Froude number 0.5
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Fig. 9 Evolution of the
central free-surface profile
for the case of a spheroid
with a diameter-to-length
ratio 0.1 with the
diameter-to-submergence
ratio 1.0 and Froude number
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From Fig. 9 one can see that, when the spheroid has traveled for one hull length (xc = L), the free-surface humps
up above the first half of the hull and sinks down to the lowest just right at the stern. As the spheroid moves further
forward for about two more hull lengths (xc = 3L), the hollow becomes more pronounced and another hump arises
behind the hollow while the first hump keeps its shape and the generated waves spread out to both sides. As the
spheroid moves further, the wave shape in the vicinity of the spheroid approaches the steady state gradually and
the generated waves keep on spreading out. From the evolution of the free-surface wave, it may be concluded that
the wave pattern within the range of 3L from the center of the spheroid achieves the steady state approximately
after the stage at xc = 8L .

Surface elevations at the centerline computed from other models, as a benchmark for comparison of the present
numerical results, are digitized from the work of Tuck and Scullen [45], in which the fully nonlinear model of
Scullen [44] was used to test the significance of nonlinearity. The nonlinear terms were optional in the code of
Scullen [44]. A comparison of the computed central free-surface profile at steady state with those reported in the
work of Tuck and Scullen [45] is shown in Fig. 11. It should be noted that the results of Tuck and Scullen [45], for
a spheroid resting firmly in a steady current flowing forward in the positive x-direction and a central free-surface
profile, was shown on a dimensionless scale of k0x and k0z, where k0 = g/U 2

b ; these have been converted for
comparison with the present results, on a dimensionless scale of (x − xc)/L and η/ f . Comparing with the other
three linear results, one can observe better agreement between the present result and the result of the nonlinear
model, which was dubbed the Neumann–Stokes model in the paper of Tuck and Scullen [45].

For further comparisons, a spheroid with a diameter-to-length ratio of 0.245 is chosen. The diameter-to-submer-
gence ratio is 0.816. Numerical computations with the Froude number ranging from 0.4 to 0.8 have been carried
out. The range of the computational domain is the same as that in previous simulations, while the spheroid is more
voluminons. Figure 12 shows the wave patterns with a clear wake transition at xc = 8L for various Froude numbers.
For low Froude number (for example FL =0.4), the dominant waves are of a transverse form, while, as the Froude
number gets higher, the transverse waves lengthen and divergent waves become more apparent. It is of interests to

Fig. 10 Wave pattern in a three-dimensional view at
xc = 8L for the case of a spheroid with a diameter-
to-length ratio 0.1, with the diameter-to-submergence
ratio 1.0 and Froude number 0.5
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Fig. 11 Computed central free-surface profile at steady state
compared with other numerical results, for the case of a spheroid
with a diameter-to-length ratio 0.1, with the diameter-to-submer-
gence ratio 1.0 and Froude number 0.5
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Fig. 12 Wave patterns in a three-dimensional view at xc = 8L for the case of a spheroid with a diameter-to-length ratio 0.245 and with
diameter-to-submergence ratio 0.816

note that the pattern of the transverse waves of FL =0.5 in Fig. 12 is similar to the pattern of the transverse waves
in Fig. 10, for the two spheroids are traveling at the same speed. However, in Fig. 10 the divergent waves are more
pronounced due to the shallower submergence but the free-surface deviation is smaller because of the slenderness
of the spheroid.

When the steady state of the flow in the vicinity of the spheroid is achieved, the resistance force acting on the
body can be calculated by the following integral:

R = ρ

∫

∂ B

1

2
nx

∣∣∣⇀u
∣∣∣
2
dS, (22)
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Fig. 13 Comparison of resistance coefficient computed by the
present model with other numerical results, for the case of a
spheroid with a diameter-to-length ratio 0.245 and with diam-
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Fig. 14 Bodies considered in the wave-resistance problem in
[13]

where ρ denotes the density of the fluid, ∂ B denotes the body surface, and
⇀
u is the relative velocity with respect

to the moving spheroid. Therefore
⇀
u = ⇀

v − Ub
⇀

i . To compare the present results with those of other works, the
wave-resistance coefficient is used. It is defined as

CR = R
π
6 ρgLd2 . (23)

Figure 13 shows the results of the present method in comparison with those reported by Scullen [44] which
included results produced by others [41–43]. All the data for comparison were digitized from the work of Scullen
[44]. The numerical methods employed by Doctors and Beck [41] and Cao [43], as well as the present one, were
time-dependent formulations. The steady states were extrapolated to estimate the approximation. Numerical results
of all six methods are in good agreement with one another. From Fig. 13, one can find that the drag-force coefficient
appears to have the largest value at FL = 0.6.

5.2.4 Wave pattern generated by objects of different shapes

For investigating the effects on the accuracy of the desingularized distance of the desingularized boundary-integral
method in free-surface flow problems, Lalli [13] carried out several test cases, including wave patterns generated
by the steady motion of two different submerged bodies. One of these two submerged bodies was a spheroid of
length-to-diameter ratio 0.2, while the other one is a streamlined circular cylinder with a half-sphere-shaped “bow”
and the “stern” composed of a half-spheroid. The length of the half-spheroid was 1.5d. The appearances of these
two bodies are shown in Fig. 14. The submergence-to-diameter ratio was 1.0. Thus, the water depth above the body
was 0.5d. The Froude number for the spheroid case and the cylinder case are 0.447 and 0.448, respectively. Lalli’s
results [13] were compared with their own experimental data.

The range of the computational domain for simulating is the same as in previous cases. The arrangements of
the free-surface collocation points and sources above the free surface are also the same. The collocation points on
the body surface and sources inside the body follow the same arrangement as in pervious cases. Wave patterns in
a three-dimensional view at xc = 8L for these two cases are shown in Fig. 15. These two patterns are very similar,
but different at two dominant peaks above and at the back of the body. For a streamlined cylinder, the first peak
above the body is higher, while the second peak is lower and wider. The present model is verified by comparing the
free-surface profiles at y = 2.3L , 2.8L , and 4.4L with numerical results and experimental data reported in [13],
from which data for comparison have been digitized. Comparison of the present results with experimental data and

123



76 N.-J. Wu, T.-K. Tsay

Fig. 15 Wave patterns in a three-dimensional view at xc = 8L for both bodies for cases of diameter-to-length ratio 0.2, diameter-
to-submergence ratio 1.0 and Froude number 0.447 and 0.448, respectively

the numerical results of Lalli [13] are shown in Figs. 16 and 17. A better agreement of the present results with the
experimental data can be found.

6 Conclusions

Following the approach of Wu et al. [28], which is a boundary-type meshless method with non-iterative leap-frog
time-marching scheme, and applying a more accurate finite-difference approximation in the time domain to the
free-surface boundary condition, a numerical model to simulate three-dimensional fully nonlinear water-surface
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Fig. 16 Comparison of the present results with experimental
data and the numerical results of Lalli [13] for a spheroid with a
diameter-to-length 0.2, diameter to submergence ratio 1.0 and
Froude number 0.447

Ly 3.2=

Ly 8.2=

Ly 4.4=

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

Present model

Lalli (1997)

Experimental data (Lalli, 1997)

Lxx c /)( −

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

Lxx c /)( −

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

Lxx c /)( −

-0.4

-0.2

0.0

0.2

0.4

0.6

f

η

-0.4

-0.2

0.0

0.2

0.4

0.6

f

η

-0.4

-0.2

0.0

0.2

0.4

0.6

f

η

Present model

Lalli (1997)

Experimental data (Lalli, 1997)

Present model

Lalli (1997)

Experimental data (Lalli, 1997)

Fig. 17 Comparison of the present results with experimental
data and the numerical results of Lalli [13] for the case of a
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wave problems has been developed. The time-marching scheme formulated here is an explicit one that does not
require iteration when evaluating the velocity potential and the displacement at the free surface for forward time
steps. Choosing the fundamental solution of the Laplace operator as the solution form of the velocity potential
and placing all the singularities outside the computational domain, only collocation points along the boundary are
needed for solving wave problems. Thus, neither element in the domain nor meshes on the boundary are required.
The task of mesh generation is omitted. According to tests described in Sects. 3 and 4, less resolution of nodes is
needed for revealing the characteristic of the nonlinear waves, thus computer memory is saved.

The idea of MFS is similar to the indirect DBIE, while the difference is that DBIE still needs some numerical
integration along the surface on the boundary or outside the domain, but MFS only employs collocation about the
boundary points without needing any mesh generation and numerical integration.

The accuracy of the present model is verified first by comparing mass and energy conservation and surface profile
of a propagating solitary wave with an exact solution [29]. It may be attributed to the present new formulation of the
nonlinear free-surface boundary conditions that the numerical result of solitary wave run-up on a vertical cylinder
reaches 0.49h0, which is slightly higher than the result found by Ambrosi and Quatapelle [30]. The usefulness of
the present model is further confirmed by employing it to simulate wave generation in infinite water depth by a
submerged moving object. From comparisons of the present results with other numerical results [13,41–45] and
experimental data [13], very good agreement is observed.
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